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The one-dimensional periodic Anderson model with an additional Coulomb repulsion Ufc between localized
f and conduction electrons has been investigated using the projector-based renormalization method. Due to the
presence of Ufc and the hybridization V between localized and conduction electrons, various gaps are found in
the quasiparticle dispersion �̃k. The number of gaps depends on the density of the localized electrons. More-
over, a valence transition from an integer to a mixed f valence is found as a function of the bare f level energy
�̄ f. Its dependence on various model parameters is investigated for fixed total electron density. In particular, the
transition is sharpened either by increasing Ufc or by decreasing the hybridization or the temperature.
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I. INTRODUCTION

The observation of a superconducting phase in CeCu2Si2
and related heavy-fermion compounds under high external
pressure1,2 yields a new possibility to study the mechanism
of unconventional superconductivity. At small applied pres-
sure ��1 GPa�, a small superconducting dome is found
close to an antiferromagnetic phase.3 It is believed that the
superconducting pairing is mediated by spin fluctuations4–6

in this case. Upon further increasing the pressure, a second
superconducting dome with a higher critical temperature
appears.1,2 In this regime, the residual resistivity �0 exhibits a
peaklike behavior as a function of pressure and the coeffi-
cient A of the T2 term of the resistivity rapidly decreases with
increasing pressure.2 As it is known for heavy-fermion sys-
tems in the Kondo limit nf �1, the quantity �A scales as
m� /m= �1−nf /2� / �1−nf�,7 where nf is the f occupation num-
ber of the Ce ions and m� is the effective mass of the quasi-
particles. Therefore, the rapid decrease in A is related to a
sharp change in the Ce valence. It is claimed8 that the in-
crease in the residual resistivity �0 can be understood as a
many-particle effect that enhances the impurity potential.
The quantity �0 is also proportional to the valence suscepti-
bility −��nf /��̄ f��, where �̄ f is the bare atomic f level of the
Ce ion and � is the chemical potential.8 Thus, the enhance-
ment of �0 can be directly related to the sharpness of the
valence change. Another hint, that valence fluctuations may
enhance the superconducting critical temperature, is a rapid
volume change, which is observed by x-ray diffraction in
CeCu2Ge2 at cryogenic temperature9 for the same pressure
P� Pv at which the second superconducting dome is found.
Therefore, the investigation of the valence instability is im-
portant for the understanding of superconductivity in heavy-
fermion systems.

The abrupt change in the valence of Ce ions in heavy-
fermion systems under high pressure was qualitatively de-
scribed in Ref. 10 by including a large Coulomb repulsion
Ufc between localized f and conduction electrons in the pe-
riodic Anderson model �PAM�. Investigating this so-called
extended PAM �EPAM� in three dimensions using a slave-

boson mean-field approximation, it was found that valence
fluctuations, which occur if the bare f electron level �̄ f is
tuned relative to the Fermi level, are considerably enhanced
by a moderate strength of Ufc.

11 Associated with the rapid
valence change, d-wave superconductivity was found, and
the authors pointed out that superconductivity may be caused
by valence fluctuations. The valence instability was also
studied for the one-dimensional �1D� extended PAM �Ref.
12� using the density-matrix renormalization group
�DMRG�. However, it occurred only if Ufc was larger than
the conduction electron bandwidth and the f electron energy
�̄ f was located below the conduction band. In this treatment
superconducting singlet pairing was dominant in the valence
transition regime.

Recently, the EPAM was also studied using dynamical
mean-field theory.13 The results are in good agreement with
the DMRG calculations. Also the two-dimensional EPAM
was investigated by applying the fluctuation-exchange ap-
proximation. It was found that for modest Ufc the system is
unstable toward a charge-density wave, which may also lead
to superconductivity.14 Thus, at present, it is still unclear
whether superconductivity in the EPAM due to the valence
fluctuations occurs only for strong couplings Ufc or also in
the weak-coupling regime. Therefore, alternative theoretical
approaches are desirable to further study this problem.

In this paper, we investigate the physical properties of the
EPAM in the valence transition regime using a recently de-
veloped many-particle method called projector-based renor-
malization method �PRM�.15 Note that we do not concentrate
on the Kondo regime where the typical heavy-fermion be-
havior is found. Therefore, the physical behavior of the
Kondo lattice16 as a limiting case of the PAM is not con-
tained in the present treatment. Also, the discussion of a
possible superconducting phase in the valence transition re-
gime will be postponed to a forthcoming paper. The
projector-based renormalization method is based on the deri-
vation of a renormalized diagonal or quasidiagonal Hamil-
tonian by the repeated application of unitary transformations.
The method was already used before to study the valence
transition in the usual PAM.17 There, in the case of fixed
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chemical potential, a drastic change in the f occupation from
an integral to a mixed valence was observed. This transition
can be understood as a crossing of the renormalized f level
from below to above the Fermi level. Due to the presence of
strong electronic correlations, various approximations had to
be applied in this treatment. In particular, no solutions could
be found for a f level degeneracy of � f =2. To overcome this
restriction and to simplify the renormalization procedure, in
the present approach we employ a more general version of
the PRM, which is based on a better choice of the generator
of the unitary transformation for this case.18,19 As a conse-
quence, the renormalization equations for the parameters of
the Hamiltonian are differential equations instead of differ-
ence equations as in the former approach.

The paper is organized as follows. In Sec. II, we introduce
the EPAM. Section III introduces the PRM. Its application to
the EPAM is presented in Sec. IV. In Sec. V, the numerical
solution for the renormalization equations is given. Also, the
electronic dispersion and the dependence of the valence tran-
sition on the various model parameters is discussed. The last
section contains our conclusions.

II. EXTENDED PERIODIC ANDERSON MODEL

The EPAM is given by the Hamiltonian,

H = ��̄ f − ���
i,m

fim
† f im + �

k,m
��̄k − ��ckm

† ckm

+
1

�N
�

k,i,m
Vk�f im

† ckmeikRi + H.c.� + Ufc �
i,mm�

nim
c nim�

f

+ Uf �
i,m�m�

nim
f nim�

f . �1�

Here, f im
† �f im� and ckm

† �ckm� are creation �annihilation� op-
erators of f electrons at site i and of conduction electrons
with wave vector k, respectively. Angular momentum and
spin indices are combined in one index m �of degeneracy � f�
which is assumed to be equal for f and c electrons for sim-
plicity. The bare energies of f and conduction electrons are
denoted by �̄ f and �̄k. The chemical potential � can be used
to adjust the total electron density and N is the number of
lattice sites. The hybridization Vk between localized and de-
localized electrons is described by the third term of Eq. �1�.
In general, Vk may depend on the wave vector k.20,21 How-
ever, for simplicity a k-independent V will be used in the
following. The last two terms represent the local Coulomb
repulsion Uf between the f electrons and between the f and
the conduction electrons �Ufc�. Since Uf �Ufc, we assume
Uf to be infinite. Hence, f sites can either be empty or singly
occupied. The exclusion of double occupied f sites is real-
ized by introducing Hubbard operators �often also called X
operators22�

f̂ im
† = f im

† �
m̃��m�

�1 − f im̃
† f im̃� ¬ f im

† Dim, �2�

which replace the usual f operators. Here the operator Dim is
a local projection operator onto the empty f state at site i and
the singly occupied state with angular momentum m. Note

that the Hubbard operators do not obey the usual fermionic
anticommutation relations but instead

� f̂ im
† , f̂ im�	+ = �m,m�Dim, �3�

where an additional spin-flip term on the right-hand side for
m�m� will be neglected from the beginning. The inclusion
of such a term would be necessary for a proper treatment of
the Kondo regime, as will be explained below.

To simplify our calculation, we introduce local fluctuation
operators

��nim
c � = nim

c − 
nim
c �, ��n̂im�

f � = n̂im�
f − 
n̂im�

f � �4�

and use the identity

nim
c n̂im�

f = nim
c 
n̂im�

f � + n̂im�
f 
nim

c � + 
nim
c �
n̂im�

f � + ��nim
c ���n̂im�

f � .

�5�

Hence, in the limit Uf →	, we can write

H = � f�
i,m

f̂ im
† f̂ im + �

k,m
�kckm

† ckm +
1

�N
�

k,i,m
V� f̂ im

† ckmeikRi

+ H.c.� + Ufc �
i,mm�

��nim
c ���n̂im�

f � − UfcN
nc�
n̂f� , �6�

where

� f = �̄ f + Ufc
nc� − �, �k = �̄k + Ufc
n̂f� − � . �7�

The influence of Ufc on valence transitions was first stud-
ied in the single impurity Anderson model.23 Here, using a
mean-field approximation, a discontinuous transition was
found for a large value of Ufc. For the periodic model, the
effect of Ufc on valence fluctuations was discussed using
Hartree-Fock-type approximations, slave-boson mean-field
approximations24,25 and large-N expansions.11 All these ap-
proaches showed that a large Ufc leads to a rapid change in
the average f electron occupation when the f level �̄ f is var-
ied.

Without Ufc, the model �6� was successfully solved by the
PRM in order to investigate the valence transition for fixed
chemical potential.17,18 There, in the case of small values of
� f, the f occupation drastically changed showing a sudden
breakdown of the state with integral f occupation to a mixed-
valence state. On the other hand, without the hybridization
term, Hamiltonian �6� describes the one-dimensional
Falicov-Kimball model �FKM�, which has also been studied
using the PRM.26 Remarkably, at low temperatures, a gap in
the electronic quasiparticle dispersion appears due to the
presence of the Coulomb repulsion Ufc. In the present work,
the PRM is applied to the EPAM, Eq. �6�, where both a
Coulomb repulsion Ufc and a hybridization V between the
localized and the conduction electrons is present. Therefore,
gaps in the quasiparticle spectrum of the conduction elec-
trons are expected not only due to the Coulomb repulsion but
also due to the hybridization.

III. PROJECTOR-BASED RENORMALIZATION METHOD

In this section, we give a short introduction to the PRM.
In some aspects, this approach resembles Wegner’s flow
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equation method27 and also the similarity renormalization by
Głazek and Wilson.28,29 The PRM was introduced15 as an
alternative approach to many-particle systems and was al-
ready applied to a number of different systems. Examples are
the investigation of phonon-mediated superconductivity
starting from an explicit expression for the electron-phonon
interaction30 and the discussion of the metal-insulator transi-
tion in the Holstein model.31 Many-particle systems in the
presence of strong correlations such as the PAM were also
investigated.32 In contrast to the slave-boson mean-field
treatment,33 the PRM maps the periodic Anderson model
onto an effective model of two independent subsystems of
renormalized conduction and f electrons, thereby still taking
into account the strong correlations between the localized f
electrons. Mixed and integral valent solutions for the f elec-
trons were found.17 As a slight modification of the original
PRM version, a somewhat changed generator for the unitary
transformation can be used in the case of the periodic Ander-
son model. Thereby, the originally stepwise unitary transfor-
mation was replaced by a continuous one leading to differ-
ential renormalization equations.18,19 This is useful for
applying existing computer subroutines for solving the renor-
malization equations numerically.

The PRM starts from the separation of a given many-
particle Hamiltonian, H=H0+H1. Thereby, it is assumed
that the eigenvalues En

�0� and eigenvectors �n� of the domi-
nant part H0 are known,

H0�n� = En
�0��n� . �8�

The interaction H1 is chosen to have no diagonal matrix
elements with respect to the eigenvectors of H0, i.e.,

n�H1�m��0. The presence of H1 usually prevents an exact
solution of the full Hamiltonian H.

The goal of the PRM is to transform the initial Hamil-
tonian into an effective Hamiltonian H
 which has no tran-
sition matrix elements with energy differences greater than
some chosen cutoff 
��. Here, � is the largest transition
energy in the original model. The Hamiltonian H
 is deter-
mined by a unitary transformation according to

H
 = eX
He−X
, �9�

which can again be decomposed,

H
 = H0,
 + H1,
. �10�

H1,
 is constructed so that all matrix elements with an energy
difference �En


−Em

 �

 vanish, 
n
�H1,
�m
�=0, where En




and �n
� are the new eigenvalues and eigenstates of H0,
.
Note that in the framework of the PRM, neither �n
� nor �m
�
have to be low-energy eigenstates of H0,
. The unitary trans-
formation, Eq. �9�, guarantees that the Hamiltonian H
 has
the same eigenspectrum as H. To ensure the hermiticity of
H
, the generator X
 of the unitary transformation satisfies
X


† =−X
.
In the PRM, a crucial idea of the elimination of the tran-

sition matrix elements is carried out by defining projection
operators

P
A = �
m,n

�En

−Em


 ��


�n
�
m
�
n
�A�m
� . �11�

Note that P
 is a superoperator acting on ordinary operators
A of the Hilbert space of the system. Therefore, P
 can be
interpreted as a projection operator in the Liouville space
that is built up of all operators of the Hilbert space. Note that
in Eq. �11� only states �n
� and �m
� satisfying �En


−Em

 ��


contribute. The orthogonal complement of P
, Q
=1−P
,
projects onto the high-energy transitions of A. To find an
appropriate generator X
 of the unitary transformation, we
employ the condition that the matrix elements for transitions
of H
 with energy differences larger than 
 vanish, i.e., the
condition

Q
H
 = 0 �12�

must be fulfilled.
With the chosen generator X
, the Hamiltonian H
 can be

evaluated by Eq. �9�. It is convenient to perform the elimi-
nation procedure stepwise so that each step reduces the cut-
off energy 
 by a small amount �
. Thus, starting at the
initial cutoff � of the Hamiltonian, after the first step, all
transitions with energy transfers between � and �−�
 are
removed. The subsequent steps remove all transitions larger
than �−�
, �−2�
, and so on. The unitary transformation
for the step from an intermediate cutoff 
 to a new cutoff

−�
 can be evaluated using

H
−�
 = eX
,�
H
e−X
,�
, �13�

where the generator X
,�
 is fixed by

Q
−�
H
−�
 = 0, �14�

in analogy to Eq. �9�. This condition ensures that H
−�
 has
no matrix elements connecting eigenstates of H0,
−�
 with
energy differences larger than 
−�
.

The generator X
,�
 is not completely fixed by Eqs. �13�
and �14�. In fact, the part P
−�
X
,�
 associated with the
low-energy excitations can still be chosen arbitrarily and, in
principle, physical results derived from the renormalization
scheme should not depend on any particular choice of that
part. However, in practice, a particular choice of P
−�
X
,�


can be important. If P
−�
X
,�
=0 is chosen, the minimal
transformation to match requirement, Eq. �14�, is performed.
This choice has been used in the discrete version of the
PRM.17,19 However, in particular cases a nonzero choice for
P
−�
X
,�
 might help to circumvent problems in the nu-
merical evaluation of the renormalization equations. In the
continuous version of the PRM,19 a nonzero P
−�
X
,�
 is
allowed and the generator X
,�
 can be written as follows:

X
,�
 = P
−�
X
,�
 + Q
−�
X
,�
. �15�

Here the part Q
−�
X
,�
 ensures that Eq. �14� is fulfilled. An
appropriate choice of the remaining part P
−�
X
,�
 is fixed
in such a way that it almost completely eliminates all inter-
action parameters before the cutoff energy 
 is reached. In
this case, even the part �Q
−�
X
,�
� can be neglected at all.

Note that in general, new interaction terms will be gener-
ated in each renormalization step. This might allow the in-
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vestigation of competing interactions which naturally emerge
in the renormalization procedure. Actual calculations require
a closed set of renormalization equations. Therefore, the
originally chosen operator structure of H
 must be kept dur-
ing the renormalization procedure and factorizations must be
used to truncate higher-order operator terms. Consequently,
an initially chosen ansatz for H
 might be limited to a certain
parameter regime, if important operators for a different re-
gime have not been included.

Due to the factorization approximation, the renormaliza-
tion equations still contain expectation values which must be
calculated separately. In principle, they are defined with H


since the factorization approximation was employed for the
renormalization step from H
 to H
−�
. However, H
 al-
ways contains interactions which prevent a straightforward
evaluation. The easiest way to circumvent this difficulty
would be to neglect all interactions and use the diagonal part
H0,
 instead of the full H
. This approach was successfully
applied for the single-particle excitations and the phonon
softening close to the metal-insulator transition in the half-
filled Holstein model.34 However, it turned out that often the
interaction terms in H
 are crucial for a proper calculation of
the required expectation values. Therefore, in the following
we shall include interaction effects by evaluating the expec-
tation values with the full Hamiltonian H instead of H
. In
this case, the solution of the renormalization equations re-
quires an additional self-consistency loop that guarantees the
correct result for the expectation values.

One way to evaluate the expectation values starts from the
free energy which can be calculated either from the original

H or from the renormalized Hamiltonian H̃=lim
→0 H
,

F = −
1

�
ln Tr e−�H = −

1

�
ln Tr e−�H̃, �16�

since H̃ is obtained from H by a unitary transformation. The
desired expectation values can then be determined from the
free energy by functional derivatives.30,32

The second way employs an additional unitary transfor-
mation for the operator variable A, for which the expectation
value is evaluated,


A� =
Tr�Ae−�H�

Tr e−�H =
Tr�Ãe−�H̃�

Tr e−�H̃
. �17�

Here we have defined Ã=lim
→0 A
, where A
=eX
Ae−X
.
Therefore, additional renormalization equations need to be
derived for the 
-dependent operator A
.

The formal way to find the equations for H
 and similarly
for A
 is to compare the 
-dependent coefficients in the
renormalization ansatz, Eq. �10�, for H
 at cutoff 
−�
 with
those of the explicitly evaluated expression Eq. �13�. The
obtained difference equations for the parameters reduce to
differential equations for �
→0. Finally, in the step 
→0,
the fully renormalized Hamiltonian H
→0=H0,
→0 is ob-
tained and the interaction Hamiltonian H1 completely van-
ishes, H1,
→0=0. Note that the coefficients in the fully renor-
malized Hamiltonian depend on the initial parameter values
of the original model.

The PRM is based on the general idea that interaction
terms of a many-particle system H are eliminated by unitary
transformations. The approach removes high-energy transi-
tions but does not reduce the Hilbert space. This is different
from the poor man’s scaling35 which removes high-energy
states so that the Hilbert space is reduced. The similarity
transformation of Wilson28,29 and also Wegner’s flow equa-
tion method27 start from continuous transformations in dif-
ferential form. In contrast, in its original form, the PRM is
based on discrete transformations which lead to coupled dif-
ference equations. This allows a unified treatment of quan-
tum phase transition on both sides of a critical point.31 In the
present investigation an extension of the PRM to continuous
transformations will be used which is the better choice for
the periodic Anderson model.

IV. RENORMALIZATION OF THE EPAM

A. Generator of the unitary transformation

In order to derive renormalization equations for the pa-
rameters of the Hamiltonian, we have to start from the gen-
erator of the unitary transformation, Eq. �13�. An approxi-
mate expression for the generator X
 will be constructed on
the basis of the continuous transformation idea discussed in
the last section. The Hamiltonian of the EPAM, Eq. �6�, can
be decomposed into

H0 = � f�
i,m

f̂ im
† f̂ im + �

k,m
�kckm

† ckm − UfcN
nc�
n̂f� �18�

and

H1 =
1

�N
�

k,i,m
V� f̂ im

† ckmeikRi + H.c.� + Ufc �
kq,m

ak,k+q,m

�19�

with

ak,k+q,m =
1

N
��ckm

† ck+q,m��
i,m�

�� f̂ im�
† f̂ im��e

−iqRi. �20�

Apart from the hybridization, the perturbation H1 contains
the fluctuating part of the Coulomb repulsion Ufc. In prin-
ciple, the latter operator could be factorized also into a hy-

bridizationlike operator contribution 
ckm
† f̂ im� f̂ im

† ckm+H.c.

However, the local density operator f̂ im
† f̂ im would thereby be

factorized which should be avoided since the local con-
straints imposed by Hubbard operators would be violated in
this case. Products of Hubbard operators at the same local
site should always be kept as entities in order to obey the
influence of the strong electronic correlations.

To obtain the operator structure of X
, we consider the
following ansatz for the generator,

X
 �
1

L0
H1,

which is motivated by perturbation theory.15 Here L0 is the
unperturbed Liouville operator that is defined by L0A
= �H0 ,A	 for any operator A. For the operators ak,k+q,m and

f̂km
† ckm in Eq. �19�, we obtain
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L0ak,k+q,m = ��k − �k+q�ak,k+q,m,

L0 f̂km
† ckm = �� f − �k� f̂km

† ckm.

Hence, they can be interpreted as eigenoperators of the Liou-
ville operator L0 and the generator X
 to first order has the
form

X
 = �
k,q,m

Uk,k+q,
ak,k+q,m + �
k,m

Vk,
� f̂km
† ckm − H.c.�

�21�

with some prefactors Uk,k+q,
 and Vk,
. Using this generator
for the unitary transformation, Eq. �9�, we can derive an
appropriate ansatz for the renormalized Hamiltonian H
 after
all excitations with energies larger than cutoff 
 have been
eliminated. It is given by

H
 = H0,
 + H1,
 �22�

with

H0,
 = N� f ,
�
m

� f̂m
† f̂m�L + �

k,m
�k,
� f̂km

† f̂km�NL + �
k,m

�k,
ckm
† ckm

+ �
i,j�i

mm�

gij,
�n̂im
f �n̂jm�

f + E
 �23�

and

H1,
 = P
H1 = P
�
k,m

Vk,
� f̂km
† ckm + H.c.�

+ P
 �
k,q,m

Uk,k+q,
ak,k+q,m. �24�

Here, P
 is a projection operator in the Liouville space. It
projects onto all low-energy transitions with energies smaller
than 
 with respect to the unperturbed Hamiltonian H0,
.
Note that all prefactors in Eq. �22� now depend on the cutoff

. Moreover, additional terms have been generated. Besides
an energy shift E
, also a new interaction term �gij,
 be-
tween the localized f electron densities appears in H0,
 and
an additional hopping between different f sites. Here

� f̂km
† f̂km�NL =

1

N
�
i�j

f̂ im
† f̂ jmeik�Ri−Rj� �25�

is the nonlocal �NL� part of the k-dependent f electron den-
sity operator, whereas the local part is given by

� f̂m
† f̂m�L =

1

N
�
k

f̂km
† f̂km =

1

N
�

i

f̂ im
† f̂ im. �26�

Both parts obey the simple relation

� f̂km
† f̂km�NL + � f̂m

† f̂m�L = f̂km
† f̂km. �27�

Finally, f̂km
† is the Fourier transform of f̂ im

† ,

f̂km
† =

1
�N

�
i

f̂ im
† eikRi. �28�

The initial parameter values at the cutoff � of the original
model are

� f ,� = � f, gij,� = 0, �k,� = 0, Vk,� = V ,

�k,� = �k, Uk,k+q,� = Ufc, E� = − NUfc
nc�
n̂f� .

�29�

Next, we have to evaluate the action of the superoperator P


on the interaction operators in H
 to fulfill the requirement
Q
H
=0. First we apply the unperturbed Liouville operator

L0,
 at cutoff 
 to f̂km
† ckm and to ak,k+q,m in order to find the

excitation energies of the renormalized Hamiltonian H1,
.
The resulting eigenvalues of L0,
 can be understood as exci-
tation energies caused by the hybridization and the Coulomb
interaction. Let us first consider the hybridization term

L0,
 f̂km
† ckm = �� f ,
 − �k,
� f̂km

† ckm

+
1

N3/2 �
p,i,j

�1 − �ij��p,
 f̂ im
† Djmckmei�k−p�RjeipRi

+
1

N3/2 �
p,i,j,m�

�1 − �mm��

� �p,
 f̂ im
† f̂ jm

† f̂ jm�ckmei�k−p�RjeipRi, �30�

where the second and third term on the right-hand side both
follow from the newly generated f hopping in H1,
 and the
special form of the anticommutator relations, Eq. �3�. Note
that only f electron operators acting on different sites i� j
contribute to the second term. As an approximation, we may
replace the operator Djm by its expectation value

D = 
Djm� = 1 −
� f − 1

� f

n̂j

f� , �31�

where 
n̂j
f�=�m
 f̂ jm

† f̂ jm
† � is the average f site occupation and

Djm was defined in Eq. �2�. Note that the average D is inde-
pendent of j and m. Finally, by neglecting spin-flip processes
�third term in Eq. �30�	, we obtain

L0,
 f̂km
† ckm = �� f ,
 + D��k,
 − �̄
� − �k,
	 f̂km

† ckm,

where �̄
= �1 /N��k�k,
 is the averaged f dispersion. Simi-
larly, we can evaluate the excitation energies caused by the
Coulomb repulsion. We find

L0,
ak,k+q,m = ��k,
 − �k+q,
�ak,k+q,m

+
1

N
�
p

��p,
 − �p−q,
�bk,k+q,p,m, �32�

where
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bk,k+q,p,m =
1

N
��ckm

† ck+q,m� �
i�j,m�

�� f̂ im�
† f̂ jm��e

iqRjeip�Ri−Rj�.

�33�

Due to the fluctuation operators in ak,k+q,
 no additional term
appears in Eq. �32�. For a weak hybridization V, the effective
dispersion energy of the f electrons, �k,
�V2 / ��k−� f�, is
small and the last term in Eq. �32� can be neglected. Thus we
can write

H1,
 = P
H1 = �
k,m

��
 − �� f ,
 + D��k,
 − �̄
� − �k,
��

� Vk,
� f̂km
† ckm + H.c.� + �

k,q,m
��
 − ��k,


− �k+q,
��Uk,k+q,
ak,k+q,m,

where the � functions ensure that Q
H
=0 is fulfilled. With
this expression for H1,
, the generator X
,�
 can be written in
close analogy to Eq. �21� as

X
,�
 = �
k,m

�k�
,�
�� f̂km
† ckm − H.c.�

+ �
kq,m

�k,k+q�
,�
�ak,k+q,m, �34�

with parameters �k�
 ,�
� and �k,k+q�
 ,�
� that have to be
chosen in such a way that the condition Q
−�
H
−�
=0 is
satisfied. Using the abbreviations

Ak,
 = � f ,
 + D��k,
 − �̄
� − �k,
,

Bk,k+q,
 = �k,
 − �k+q,
, �35�

we make the ansatz

�k�
,�
� = �

Ak,
��
 − �Ak,
��

��
 − �Ak,
��2 Vk,
,

�k,k+q�
,�
� = �

Bk,k+q,
��
 − �Bk,k+q,
��

��
 − �Bk,k+q,
��2 Uk,k+q,
.

�36�

We will show that this is an appropriate choice for the con-
tinuous formulation of the PRM. The constant � denotes an
energy constant to ensure that the parameters �k�
 ,�
� and
�k,k+q�
 ,�
� are dimensionless.

B. Renormalization equations

In order to derive renormalization equations for the pa-
rameters of Hamiltonian �23�, we compare two alternative
expressions for H
−�
 that allow to find relations between
the parameters at cutoffs 
 and 
−�
. The first expression
for H
−�
 is obtained by writing the renormalization ansatz,
Eq. �22�, for the reduced cutoff 
−�
 instead of 
,

H
−�
 ª H
�
→
−�
. �37�

The second expression follows from the direct evaluation of
the unitary transformation, Eq. �13�. Since both �k�
 ,�
�

and �k,k+p�
 ,�
� are proportional to �
, this yields

H
−�
 = eX
,�
H
e−X
,�
 � H
 + �X
,�
,H
	 . �38�

Comparing the operators in Eq. �37� with the equivalent op-
erators from Eq. �38�, which are obtained after an additional
factorization of the commutator expression, one finds differ-
ence equations for the 
-dependent parameters of H
. The
final renormalization equations in differential form are ob-
tained in the limit �
→0,

d�k,


d

= 2DVk,
�̃k,
 +

2

N
�
q

C�
f f�q�Uk,k+q,
�̃k+q,k,
,

d� f ,


d

= −

�� f − 1�
N

�
k

��k,
 − �̄
��̃k,

 f̂km
† ckm + H.c.�

−
2

N
�
k

Vk,
�̃k,
�1 + �� f − 1�
ckm
† ckm�	

−
2 − 4
nf�

N2 �
k,q,m�

Uk,k+q,
�̃k+q,k,

ck+q,m�
† ck+q,m�� ,

d�k,


d

= − 2Vk,
�̃k,
,

dgk,


d

= −

1

N
�
q,m

Uq,q+k,
�̃q+k,q,
�
cq+k,m
† cq+k,m� − 
cqm

† cqm��

−
1

N2 �
q,k�,m

Uq,q+k�,
�̃q+k�,q,
�
cq+k�,m
† cq+k�,m�

− 
cqm
† cqm�� ,

dVk,


d

= Ak,
�̃k,
,

dUk,k+q,


d

= Bk,k+q,
�̃k,k+q,
. �39�

Here, we have introduced

�̃k,
 = lim
�
→0

�k�
,�
�
�


,

�̃k,k+q,
 = lim
�
→0

�k,k+q�
,�
�
�


. �40�

In principle, also an equation for the energy shift E
 can be
derived. Note that the renormalization Eq. �39� depend on
expectation values, which enter due to a factorization ap-
proximation as discussed in the last section. Here,

C�
f f�q� =

1

N
�
i,j

m,m�


�n̂im
f �n̂jm�

f �eiq�Ri−Rj� �41�

is a wave-vector-dependent density-density correlation func-
tion for the f electrons. This quantity as well as the other
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expectation values 
ckm
† ckm�, 
 f̂km

† ckm+H.c.�, 
n̂f�, and D in
Eq. �39� have to be determined self-consistently within the
renormalization procedure.

The renormalization equations will be evaluated by inte-
grating Eq. �39� between the cutoff 
=� of the original
Hamiltonian and 
=0. Thereby, all transitions caused by the
hybridization and the Coulomb repulsion will be eliminated.
This leads to the renormalized Hamiltonian

H̃ = �
k,m

�̃kckm
† ckm + �̃ f�

i,m
f̂ im

† f̂ im + Ẽ + �
i�j

m,m�

g̃ij�n̂im
f �n̂jm�

f

+ �
k,m

�̃k� f̂km
† f̂km�NL. �42�

Here �̃ f = �̃ f − �̄̃
 is denoted for a renormalized f level. In the
final result �42� the operator part H1,
 has completely disap-
peared, i.e., H1,
=0=0.

Note that from the commutator �X
,�
 ,H
	 some “higher-
order” terms have been neglected, which are not present in
H
. In particular, the remaining fluctuation operators beyond
the factorization approximation have been left out. A priori it
is not clear whether or not the neglected terms are relevant
for the physical behavior of the model. To investigate this
question, one would have to add contributions to the Hamil-
tonian of the same operator type and to write down renor-
malization equations for the new set of parameters. For ex-
ample, a contribution in �X
,�
 ,H
	 that has been neglected
has the form

�
1

�N
�
kk�

�
��

��
 − ��k,
 − �k�,
���̃k,
Vk�,
 � Sk−k����ck��
† ck�

�43�

�where ��� are Pauli matrices�. It arises from the anticom-
mutator relation �3�, when spin-flip processes are included.
Obviously, the term, Eq. �43�, resembles the Kondo ex-
change, which is known from transforming the PAM to the
Kondo Hamiltonian by use of the Schrieffer-Wolff transfor-
mation. The Kondo exchange becomes important in the
Kondo regime of the PAM, when 
nf�=1, but is of minor
importance in the intermediate valence regime. All new
renormalization contributions should either vanish for 

→0 or should at least not change significantly the behavior
of the original parameters. In that respect, the present ap-
proach completely resembles the flow equation approach of
Wegner.36

C. Renormalization of H̃

In the Hamiltonian H̃, conduction electrons and f elec-

trons are decoupled, H̃=H̃c+H̃ f. However, the f part cannot
be solved due to the presence of the hopping term �̃k and the
interaction term g̃ij. Thus, in order to evaluate the average
density 
n̂f� and the density-density correlation function
C�

f f�q�, we have to apply the PRM a second time. Here the

aim is to eliminate the �̃k term of H̃ f. Since Ufc is assumed
to be larger than V, �̃k should be small compared to g̃ij. Thus,

for cutoff 
, the f electron Hamiltonian H̃ f can be decom-
posed into

H̃

f = H̃0,


f + H̃1,

f �44�

with

H̃0,

f = �̃


f �
i,m

f̂ im
† f̂ im + �

i�j,m,m�

g̃ij,
�n̂im
f �n̂jm�

f + Ẽ
,

H̃1,

f = �

i�j,m
�̃ij,
 f̂ im

† f̂ jm. �45�

Here we have written the hopping term in the local space,

�̃ij,
 =
1

N
�
k

�̃k,
e−ik�Ri−Rj�. �46�

The initial conditions for the second PRM are, according to
Eq. �42�,

�̃�
f = �̃ f, g̃ij,� = g̃ij, �̃ij,� = �̃ij, Ẽ� = Ẽ . �47�

In order to derive renormalization equations for the param-
eters of Hamiltonian �44�, we again apply a unitary transfor-

mation from 
 to 
−�
 on H̃

f ,

H̃
−�

f = eX
,�


f
H̃


f e−X
,�

f

. �48�

Similar to the renormalization before, an ansatz for the gen-
erator X
,�


f can be found from lowest-order perturbation
theory

X
,�

f = �

i,j�i
m

�ij
f �
,�
�Am,ij

f . �49�

Here

Am,ij
f =

2

�ij,

 �
i,r�i

n

g̃ri,
�n̂rn
f f̂ im

† f̂ jm − �
i,r�j

n

g̃rj,
 f̂ im
† f̂ jm�n̂rn

f �
with the prefactor

�ij
f �
,�
� =

�ij,
�ij,
��
 − ��ij,
��
��
 − ��ij,
��2 �
 , �50�

where

�ij,
 = � 2� �
r,s��i,j�

nn�

�g̃ri,
g̃si,
 − 2g̃ri,
g̃sj,


+ g̃rj,
g̃sj,
�
�n̂rn
f �n̂sn�

f ��1/2
.

The renormalization equations for the parameters of the
Hamiltonian are found by comparing the expression �44� for

H̃

f , where 
 is replaced by 
−�
, with the expression for

H̃
−�

f , which is obtained by direct evaluation of the unitary

transformation, Eq. �48�. One finds
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d�̃

f

d

= −

2D

N3 �
�j,l,r��i,m

��̃lj,
�g̃ir,
 − g̃il,
�
�̃rl,


f

�rl,

− �̃rl,
�g̃il,


− g̃ij,
�
�̃lj,


f

�lj,

�
 f̂ rm

† f̂ jm� ,

dg̃ij,


d

= −

4

N2 �
r,s�r

m

�g̃sj,
 − g̃rj,
��g̃ir,
 − g̃is,
�
�̃rs,


f

�rs,


 f̂ rm

† f̂ sm� ,

d�̃ij,


d

= �ij,
�̃ij,


f , �51�

where

�̃ij,

f = lim

�
→0

�ij
f �
,�
�

�

. �52�

Solving the set of differential Eq. �51� with the initial condi-
tions, Eq. �47�, one finds the renormalized parameters for 

→0. Thus, the fully renormalized Hamiltonian for the f elec-
tron part reads

H̃̃ f = �̃̃ f�
i,m

n̂im
f + �

i�j,m,m�

g̃̃ij�n̂im
f �n̂jm�

f + Ẽ̃ , �53�

where the double tildes denote the parameter values for 


→0. Note that the effective Hamiltonian H̃̃ f describes a
lattice-gas model of ions, which interact via a possibly long-
range interaction g̃̃ij. Since all local-density operators com-
mute, we can use either classical Monte Carlo simulations or
an exact-diagonalization �ED� approach to evaluate the ex-
pectation values 
n̂f�H̃˜ f and C�,ij

f f ��mm�
�n̂im
f �n̂jm�

f �H̃˜ f which

are formed with H̃̃ f.
Together with the conduction electron part of Eq. �42�, the

final Hamiltonian reads

H̃̃ = �
k,m

�̃kckm
† ckm + �̃̃ f�

i,m
f̂ im

† f̂ im + �
i�j,m,m�

g̃̃ij�n̂im
f �n̂im�

f + Ẽ̃ .

�54�

Note that this result resembles the effective Hamiltonian of
the PRM applied to the Falicov-Kimball model.26

D. Expectation values

Finally, we have to evaluate the expectation values in the
renormalization equations. According to Sec. IV B they are
formed with the full Hamiltonian H. Let us start from rela-
tion �17� which states that both the Hamiltonian and the op-
erators in expectation values are subject to the same unitary
transformation. As an example, let us consider 
ckm

† ckm�. One
way to evaluate this quantity would be to derive renormal-
ization equations for the composite operator �ckm

† ckm�
. The
resulting equation looks similar to Eq. �37� since the Hamil-
tonian H
 contains the operator product ckm

† ckm. However,
different initial parameter values at cutoff � would have to
be taken for each value of k. The remaining expectation

values 
n̂f� and 
 f̂km
† ckm+H.c.� can be evaluated in the same

way. However, in order to restrict the numerical effort, we
shall proceed differently by deriving separate renormaliza-
tion equations for single fermion creation or annihilation op-

erators f̂km
�†� and ckm

�†� . For instance, for �ckm
† ckm�
=ckm,


† ckm,

we make the ansatz

ckm,

† = xk,
ckm

† + yk,
 f̂km
† , �55�

where xk,
 and yk,
 are 
-dependent coefficients with the
initial values

xk,� = 1, yk,� = 0 �56�

at 
=�. The operator structure of ckm,

† in Eq. �55� is derived

from the first-order expression in V. Thereby, less important
contributions from Ufc to the new generator X
 will be ne-
glected. This is in contrast to the influence of Ufc on the
renormalized conduction electron dispersion �̃k where addi-
tional gaps appear due to the presence of the Coulomb repul-
sion Ufc.

To assure that the 
-dependent operators ckm,
 and ckm,

†

fulfill fermionic anticommutator relations, the identity

�xk,
�2 + D�yk,
�2 = 1 �57�

must hold. Proceeding analogous to the renormalization pro-
cedure for H
, we find the differential equations,

dxk,


d

= Dyk,
�̃k,
,

dyk,


d

= − xk,
�̃k,
. �58�

For the transformation of f̂km
† , we use the corresponding an-

satz,

f̂km,

† = − Dyk,
ckm

† + xk,
 f̂km
† , �59�

which allows to evaluate the expectation values 
n̂f� and


 f̂km
† ckm+H.c.�. Solving the differential Eq. �58� with the ini-

tial conditions, Eq. �56� and taking the limit 
→0, we obtain
the renormalized prefactors x̃k and ỹk. Then, the expectation
values can be expressed by


ckm
† ckm� = �x̃k�2f��̃k� + �ỹk�2
 f̂km

† f̂km�H̃,


 f̂km
† f̂km� = D2�ỹk�2f��̃k� + �x̃k�2
 f̂km

† f̂km�H̃,


 f̂km
† ckm + H.c.� = − 2x̃kỹk�Df��̃k� − 
 f̂km

† f̂km�H̃	 , �60�

where

f��̃k� = 
ckm
† ckm�H̃ =

1

e��̃k + 1
�61�

is the Fermi function for the renormalized conduction elec-
trons and �=1 /T is the inverse temperature.

To evaluate the expectation value 
 f̂km
† f̂km�H̃, one can ap-

ply the second renormalization transformation from Sec.

IV C which was used before to renormalize H̃. Taking H̃1,

f

from Eq. �45� as perturbation, 
 f̂km
† f̂km�H̃ can be expressed by

new expectation values which are formed with H̃̃ f, defined in
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Eq. �58�. However, it turns out that the density-density term

�g̃̃ij can be neglected in the f part of H̃̃. For a qualitative
argument for this approximation let us consider the density-
density correlation function of f electrons, 
�n̂i

f�n̂j
f�H̃˜ at finite

temperature, which can be evaluated by classical Monte

Carlo techniques. As already mentioned, H̃̃ agrees with the
effective Hamiltonian of the Falicov-Kimball model
�FKM�,26 obtained by applying the PRM. For this model it
was shown that 
�n̂i

f�n̂j
f�H̃˜ has a maximum at Ri=R j and

decreases exponentially with increasing distance �Ri−R j�.
Thus, for finite temperatures we have

�
m,m�


�n̂im
f �n̂jm�

f �H̃˜ � �ij �
m,m�


�n̂im
f �n̂im�

f �H̃˜ � �ij
n̂f��1 − 
n̂f�� .

�62�

The result depends on the average occupation 
n̂f� of the f
electrons. If 
n̂f� is either almost zero or one, the density
correlations of the f electrons become small. In the interme-
diate valence regime, when �̃ f is close to the Fermi level, we
can neglect the density contributions in the case of large Ufc,
too, because 
n̂f� changes abruptly from 
n̂m

f ��1 to 
n̂m
f �

�0. Of course, also for small Ufc �i.e., in the weak-coupling
limit� the g term can be neglected. Thus, omitting the g̃̃ij

term, the renormalized Hamiltonian H̃ reduces to

H̃ = �
k,m

�̃kckm
† ckm + �̃ f�

i,m
f̂ im

† f̂ im + �
k,m

�̃k� f̂km
† f̂km�NL + Ẽ .

�63�

Note that this Hamiltonian H̃ has the same form as the
Hamiltonian obtained by the PRM applied to the periodic
Anderson model.17,18

Using the simplified Hamiltonian �63�, we are able to

evaluate 
 f̂km
† f̂km�H̃, although due to the unusual properties of

Hubbard operators, further approximations are necessary. For
this reason, let us consider the case where the renormalized f
level is above the Fermi energy. Then, only few f electrons
are present and a mean-field treatment of the Hubbard opera-

tors is justified. According to Ref. 17, one finds 
 f̂km
† f̂km�H̃

� f��̃k�. Here, f��̃k� is the Fermi function at the renormal-
ized dispersion �̃k of the f electrons, where �̃k= �̃ f +D��̃k

− �̄̃� and D�1 in this case. For a general f level position, the
expectation value can be written as


 f̂km
† f̂km�H̃ =

1

Tr e−�H̃
Tr� f̂km

† f̂kme−�H̃�

=
1

Tr e−�H̃
Tr�e�H̃ f̂kme−�H̃ f̂km

† e−�H̃� , �64�

where we have used e−�H̃e�H̃=1 and the cyclic invariance of
the trace, Tr�abc�=Tr�bca�. Using Eqs. �3� and �63�, we find

e�H̃ f̂kme−�H̃�e−��̃k f̂km and hence


 f̂km
† f̂km�H̃ �

e−��̃k
� f̂km
† , f̂km��H̃

1 + e−��̃k
= Df��̃k� . �65�

Note that from Eq. �65� and D=1− ��� f −1� /� f	
n̂f� an inter-
esting relation between the f occupation 
n̂f� and the f elec-
tron dispersion �̃k follows:

D =
1

1 +
� f − 1

N
�
k

f��̃k�
.

Using Eq. �65�, we can rewrite the expectation values in Eq.
�60� as


ckm
† ckm� = �x̃k�2f��̃k� + D�ỹk�2f��̃k� ,


 f̂km
† f̂km� = D2�ỹk�2f��̃k� + D�x̃k�2f��̃k� , �66�

and


 f̂km
† ckm + H.c.� = − 2Dx̃kỹk�f��̃k� − f��̃k�	 , �67�

where the tilde symbols again denote the renormalized pa-
rameters in the limit 
→0.

At this point, all physical quantities can be calculated.
Their dependence on the model parameters such as tempera-
ture T, hybridization V, Coulomb repulsion Ufc, etc., is found
by solving the renormalization equations self-consistently:
�i� start from appropriate chosen initial values for the expec-

tation values 
ckm
† ckm�, 
n̂f�, 
 f̂km

† ckm+H.c.� and integrate the
differential Eqs. �39� and �58� to obtain the renormalized
parameters and prefactors. �ii� Calculate a new approxima-
tion for the set of expectation values. �iii� Repeat steps �i�
and �ii� until convergence is reached, i.e., the difference of
two consecutive sets of expectation values is smaller than
some chosen limit. Using these final expectation values, one
can calculate the physical quantities of interest.

V. NUMERICAL RESULTS

In this section we present numerical results obtained by
solving the renormalization equations for the EPAM. To sim-
plify the evaluation we restrict ourselves to the one-
dimensional case. In a subsequent paper, the method will be
extended to two dimensions in order to discuss a possible
superconducting state close to the valence transition regime.
In one dimension �1D� it is also advantageous that we can
treat larger systems. We can also compare our results with
DMRG studies in 1D.12 We choose a fixed total electron
density n= 
nc�+ 
n̂f�=1.75 and an angular momentum de-
generacy � f =2. The conduction electron dispersion for the
noninteracting electron band is �̄k=−2t cos k, where t=1 is
used as the energy unit. In the following, we discuss the
dependence of the renormalized dispersion �̃k, the f electron
occupation 
n̂f�, and the renormalized f energy �̃ f on the bare
f-energy �̄ f in the mixed valence regime. Note that for fixed
total electron density the chemical potential depends on the
bare energy �̄ f. As long as �̄ f is far below the Fermi surface
all localized states are occupied and 
nc��0.75 for the
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present case. In contrast, for large positive �̄ f the localized
states are approximate empty and 
nc��1.75 follows.

A. Dispersion relation

Let us start with the fully renormalized dispersion �̃k of
the conduction electrons. As was discussed before, the renor-
malization Eq. �39� for Hamiltonian �42� can be solved when

the expectation values are known. The final Hamiltonian H̃
describes two separated systems of renormalized electrons.
The f-electron part has the form of the renormalized FKM,26

for which the expectation values 
n̂f� and correlation func-
tion C�,ij

f f can be evaluated either using classical Monte Carlo
or ED. In contrast to the static expectation values, the proper
determination of �̃k requires to incorporate the density-
density term ��n̂i

f�n̂j
f from Eq. �42�.

For low enough temperatures, the f-electron states in the
FKM favor several almost homogeneous configurations.26,37

This can be rigorously proven37 for large values of the Cou-
lomb repulsion Ufc and is conjectured to hold for arbitrary
values.38 For the one-dimensional case, some configurations
for different fillings are listed in Table I.

As a typical case, let us consider a f electron filling of

n̂f�=1 /3. There are three equivalent degenerate ground
states of period 3 with corresponding arrays �100…�,
�010…�, and �001…�. According to Ref. 26 one obtains


�n̂i
f�n̂j

f� = �2/9 �Rj − Ri� = 0,3,6,9, . . .

− 1/9 �Rj − Ri� = 1,2,4,5, . . .
� �68�

for the correlation function of the local-density fluctuations,
where a=1 is used for the lattice constant. Note that the
result �68� is also valid for 
n̂f�=2 /3. Figure 1 shows the
Fourier-transformed quantity C�

f f�k� as a function of the mo-
mentum k for different values of 
n̂f� for the configurations
of Table I. In the case 
n̂f�=1 /2, there are two Kronecker
deltas, located at k�= ��. For 
n̂f�=1 /3, the Kronecker del-
tas are present at k�= �2� /3 with smaller amplitudes. In
general, for 
n̂f�=1 /m �m integer�, increasing m leads to
smaller amplitudes of the Kronecker deltas in C�

f f�k�. Further
the results for 
n̂f�=1 /m and 
n̂f�=1−1 /m coincide.

Next, we insert the Fourier-transformed correlation func-
tions C�

f f�k� from Table I into the differential Eq. �39�, to-
gether with some guessed initial expectation values for 
n̂f�,


ckm
† ckm�, and 
 f̂ km

† ckm+H.c.�. With the initial condition �29�,
we can find from the solution the renormalized Hamiltonian
�42�. Since it is not diagonal, we have to proceed as dis-

cussed in Sec. IV C, in order to remove the hopping part H̃1
f

of Eq. �44�. With the fully renormalized Hamiltonian H̃̃ of
Eq. �54�, we are able to recalculate the expectation values


n̂f�, 
ckm
† ckm�, and 
 f̂ km

† ckm+H.c.� by using Eq. �60� and the
renormalization Eq. �58�. The new expectation values are
now used to repeat the self-consistent calculation until con-
vergency is reached. For simplicity, the correlation function
C�

f f�k� is not renormalized. Note that we also have to adjust
the chemical potential � as well as �̄ f in order to fulfill the
condition n= 
nc�+ 
n̂f�=1.75 for a given value of 
n̂f�.

To illustrate the renormalization process, Fig. 2 shows the

 dependence of the hybridization Vk,
 and Coulomb repul-
sion Uk,�/8,
 for the first renormalization step using an one-
dimensional lattice with N=80 sites. In this figure, Vk,
 in

TABLE I. Typical examples of ground-state configurations for
different fillings.


n̂f� Configurations

1 1111111111111111111…
2/3 1101101101101101101…
1/2 1010101010101010101…
1/3 1001001001001001001…
1/4 1000100010001000100…
1/5 1000010000100001000…
¯ ¯

0 0000000000000000000…

-1 -0.5 0 0.5 1
k/π

0
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40

50

C
ρff (k

)

〈n̂f〉 = 1/2

〈n̂f〉 = 1/3

〈n̂f〉 = 1/4

〈n̂f〉 = 1/7

FIG. 1. �Color online� Fourier transformation C�
f f�k� of 
�n̂i

f�n̂j
f�

for different values of f electron occupations 
n̂f� according to the
configurations of Table I. The number of lattice sites is N=200.
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FIG. 2. �Color online� Dependence of Vk,
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PHAN, MAI, AND BECKER PHYSICAL REVIEW B 82, 045101 �2010�

045101-10



panel �a� and Uk,�/8,
 in panel �b�, are plotted for several
values of k with initial parameters Ufc=1, V=0.1, �̄ f =−1,
and T=0.05. As expected, Vk,
 and Uk,�/8,
 decrease expo-
nentially for all k values with decreasing 
. Hence, no con-
tributions of the hybridization or the Coulomb interaction
remain for 
→0. In Fig. 3, the hopping term �̃ij,
 between
localized electrons from Eq. �46� is shown as a function of 

for the second renormalization step and some distances �
= �Ri−Ri� between lattice sites Ri and R j. As before, �̃ij,

decreases exponentially to zero, when 
 approaches the ex-
citation energies. This observation is valid for all distances �.

Next we discuss the effective dispersions. Figure 4 shows
the renormalized conduction electron energies �̃k �black
circles� as functions of k for different values of 
n̂f�. Due to
�k=�−k, we can restrict ourselves to the positive half plane of
the momentum space, k
0. In the case of 
n̂f�=1 /2 �Fig.
4�a�	, two gaps are present. For smaller values 
n̂f�
=1 /3,1 /4,1 /7, the number of gaps increases, as can be seen
in panels �b�–�d�. Note that one of the gaps is always caused
by the hybridization V. It opens at the Fermi momentum kF
and results from the crossing of the one-particle energies of
the conduction electrons and of the localized electrons in the
valence transition regime. The other gaps are caused by the
Ufc term. Here, the number of the gaps depends on the num-
ber of Kronecker deltas in the f density correlation function

C�
f f�k� �Fig. 1�. Note that C�

f f�q� enters the renormalization of
�̃k,
, Eq. �39�, via a sum over q in the renormalization part
due to Ufc. For instance, for 
n̂f�=1 /3, there is one Kro-
necker delta function for q
0 present in C�

f f�q� at k�

=2� /3. Therefore, the main contribution in the Ufc part of
the renormalization equation for �k,
 occurs for k close to
k� /2 and �−k� /2. Moreover, when k passes through k� /2 or
�−k� /2, the sign of �k,
−�k−q,
 in �k+q,k,
 changes, which
leads to the opening of a gap at these points. Thus, the renor-
malized conduction electrons dispersion for 
n̂f�=1 /3 has
two gaps at k=� /3 and k=2� /3, which are caused by the
Ufc term.

For a general interpretation of this result, let us consider
the case where the band gap is created by a weak periodic
potential.39 For a lattice with lattice constant a, the gap oc-
curs at k=K /2, where K is a reciprocal-lattice vector, K
=2n� /a �n integer�. For 
n̂f�=1 /3, the f electrons in the
ground state arrange with a periodicity of 3a. Therefore, the
system should behave as if it would have an effective peri-
odicity of 3a or effective reciprocal-lattice vectors K�
=2n� / �3a�. Thus, gaps at k=� /3 and k=2� /3 are expected
in the k interval 0�k��. Note that this interpretation can
also be applied to other periodic fillings in the system.

We have found that the number of Kronecker deltas in
C�

f f�k� increases with decreasing values of 
n̂f�. However, in
parallel also the weight of the Kronecker deltas decreases, as
shown in Fig. 1. According to the renormalization Eq. �39�
for �k,
, this leads to a decrease in the size of the gaps caused
by Ufc. For example, for the case 
n̂f�=1 /7 shown in Fig.
4�d�, the renormalized dispersion �̃k has six small gaps.
Comparing with �̃k in the case of vanishing Ufc �the red solid
line in Fig. 4�d�	, yields that the energies are almost identi-
cal. Thus, the density-density correlation of the localized
electrons due to Ufc can be neglected in this case. We con-
clude that correlations between localized electrons are not
important for 
n̂f��0 and also for 
n̂f��1 �due to the sym-
metry in the f filling mentioned above�. As a consequence, f
correlations can be neglected for a sharp valence transition,
i.e., if 
n̂f� changes abruptly from 1 to 0.

In order to investigate the influence of the other param-
eters on the gaps, the typical case 
n̂f�=1 /3 is again consid-
ered for some small temperature T=0.05. Figure 5�a� shows
the renormalized energy �̃k for Ufc=1 and different values of
the hybridization V. As discussed above, the gaps have two
different origins. Those caused by Ufc are unchanged with
respect to their position in k space and to their amplitudes, if
V is varied. In contrast, the gap caused by the hybridization
becomes larger with increasing V. The latter behavior of �̃k
agrees with that for the usual PAM.19,32 Figure 5�b� shows �̃k
for several values of Ufc and fixed hybridization V=0.1. In
contrast to Fig. 5�a�, the gaps due to Ufc become larger with
increasing Coulomb repulsion, although their positions in k
space are unchanged. This result corresponds to the discus-
sion in Ref. 26.

To discuss the influence of the temperature, �̃k is plotted
for two different temperatures, T=0.05 and T=0.2, in Fig. 6.
For the larger temperature, the f electron-density correlation
function decreases exponentially as a function of the distance
between lattice sites.26 As discussed before, only the on-site
correlation is important in this case, i.e., C�

f f�k��
n̂f��1
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FIG. 3. �Color online� 
 dependence of �̃�,
 for some lattice
distances, �= �Ri−R j� for T=0.05, V=0.1, Ufc=1, and �̄ f =−1.0.
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FIG. 4. �Color online� Renormalized quasiparticle energy �̃k for
several values of the localized electron density 
n̂f� with Ufc=1,
V=0.1, T=0.05, and N=200. Note that for all densities 
n̂f� always
one hybridization gap opens at the Fermi momentum kF. For in-
stance, for 
n̂f�=1 /2 �panel �a�	 kF�0.7. The other gaps are caused
by the Ufc term and occur at wave vectors k=�
n̂f�l �l integer�.
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− 
n̂f��, which does not depend on the momentum k. There-
fore, the total bandwidth increases and the gaps due to the
Coulomb repulsion vanish.

Note, there are no gaps in the dispersion �̃k which are
caused by Ufc when the “perturbation” H1 is put identical to
zero. In that case the remaining Hamiltonian H0 is equiva-
lent to the Hartree-Fock approximation. Also, in this case the
dispersion �̃k has to be solved self-consistently since the bare
excitations are shifted by Hartree-Fock terms Ufc
n̂c� and
Ufc
n̂f�.

B. Valence transition

Next, we discuss the valence transition in some detail. Let
us assume that the bare f level �̄ f changes, if external pres-
sure is applied, so that the effective f level �̃ f can be shifted
to the Fermi level. In this case, localized electrons can be

transferred to the conduction electron band, and the f level
becomes more and more depopulated, when �̃ f passes the
Fermi level. To discuss this phenomenon, which is called a
valence transition, we consider the average f electron density

n̂f� and the renormalized f energy �̃ f as functions of the bare
f energy �̄ f. Both quantities can be evaluated from the full
renormalization scheme for Hamiltonian �63�. The total elec-
tron number n= 
n̂f�+ 
nc� is again fixed to n=1.75 and a
system with N=80 lattice sites is considered.

In Fig. 7�a�, the valence transition can clearly be seen
from the dependence of 
n̂f� on �̄ f. When Ufc is increased the
valence transition becomes sharper. At the same time, the
transition regime is shifted to smaller values of �̄ f. The rea-
son is that for larger Ufc, �̄ f has to become smaller in order to
satisfy the condition for the transition regime, �̄ f +Ufc
nc�
��. In Fig. 7�b� the corresponding curves are shown for the
renormalized f electron energy �̃ f. Note that in the regions
with 
n̂f��1 and 
n̂f��0, a linear dependence on �̄ f with a
slope 1 is found. Here, the renormalization contributions to
�̃ f are not important and �̃ f is only shifted due to the chemical
potential. This result completely agrees with Refs. 17 and 32
where it was assumed that for this case �̃ f is determined by
the mean-field contribution from Ufc �see Eq. �29�	. In con-
trast, in the mixed-valence regime, �̃ f is almost independent
of �̄ f. In this case, �̃ f is fixed to the Fermi level when �̄ f is
varied until the f level is completely empty. Note that the
width of the valence transition regime is reduced with in-
creasing Ufc, which corresponds to a sharper valence transi-
tion. For Ufc=2, also a kink appears in the transition regime,
which results from the sudden jump of 
n̂f� in Fig. 7�a�.

In the PRM, the mean-field contributions to �k and � f
from the Ufc term are included in the initial parameter val-
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ues, Eq. �29�. These contributions are responsible for the
shift of the valence transition to smaller values of �̄ f, see Fig.
7�a�. If we define a valence susceptibility by � fª

−�
n̂f� /��̄ f, our result implies that the maximum position of
� f is shifted to smaller values of �̄ f when Ufc is increased.
This is in contrast to slave-boson mean-field calculations,11

where the maximum of � f is almost independent of Ufc. In
order to benchmark the reliability of the PRM, we compare
the present results with those obtained by DMRG
calculations.12 Unfortunately, the authors of Ref. 12 only pre-
sented properties in the valence transition regime for Ufc
=0 and Ufc�4. Therefore, our result can only be compared
directly with the case Ufc=0. Here a detailed numerical com-
parison shows complete coincidence. For example, at �̄ f
=0.2, both calculation methods give the same value 
n̂f�
=0.69. For the extended model with finite Ufc, the overall
features of the results from both methods are the same. How-
ever, the DMRG calculations show a jump of the local f
density 
n̂f� as a function of �̄ f if Ufc
5.9. Unfortunately,
the PRM is limited to not to large values of the perturbation
H1 due to construction. In the case of the EPAM, we believe
that the PRM gives reliable results in the range up to Ufc
�5, where no jump in 
n̂f� was found. Note that in the slave-
boson mean-field calculation, the jump appears for Ufc close
to 1 �cf. Fig. 2 from Ref. 12�.

To study how the valence transition depends on the tem-
perature and on the hybridization strength, the evaluated f
occupation 
n̂f� is shown in Fig. 8 as a function of �̄ f for
different values of T and V. First, as shown in Fig. 8�a�, one
finds that the transition becomes sharper when the tempera-

ture T is lowered. At low temperatures, all 4f1 states below
the Fermi energy are occupied. When the temperature is in-
creased, also higher f states become excited leading to a
4f0+ �5d6s	 configuration and the transition regime becomes
broader. Note that in Fig. 8�a� the lowest temperature is T
=0.01 �in units of t� for the case Ufc=2. This is not a small
quantity as compared, for instance, with the superconducting
transition temperature in CeCu2Si2. However, since the tran-
sition becomes sharper with decreasing temperature, the con-
vergence of the renormalization equations is limited to tem-
peratures above T=0.01.

The valence transition shows a similar behavior when the
hybridization energy V is varied for fixed temperature T and
fixed Coulomb repulsion Ufc. In Fig. 8�b�, 
n̂f� is shown for
several values of V and T=0.05, Ufc=2. The valence transi-
tion becomes sharper when the hybridization becomes
smaller. The transition becomes smoother when the hybrid-
ization is enhanced. Then the localized electrons easily con-
vert into conduction electrons, and the two configurations of
Ce ions, 4f1�Ce3+� and 4f0�Ce4+�, have the tendency to be-
come degenerate.

VI. CONCLUSIONS

In this paper, the PRM was applied to the EPAM in one
dimension. In comparison to the usual periodic Anderson
model, in the EPAM a local Coulomb repulsion Ufc between
the conduction electron and the localized electron densities is
included. For simplicity, also an infinite on-site Coulomb re-
pulsion between the f electrons was assumed. As compared
to previous approaches using the PRM, a more appropriate
choice for the generator X
,�
 of the unitary transformation is
used. As a consequence, the usual difference form of the
renormalization equations could be replaced by differential
equations which can easily be solved using existing com-
puter subroutines. This procedure also helps to avoid some
complications of previous works. On the basis of our analyti-
cal approach, a transparent physical picture for the quasipar-
ticle dispersions and the behavior at the valence transition
emerged. In particular, the gaps in the dispersion relation �̃k
of the conduction electrons can be traced back to the pres-
ence of the hybridization V and the Coulomb repulsion Ufc.
The total number of gaps in �̃k depends on the density of the
localized electrons. For vanishing as well as for almost inte-
gral f occupation 
n̂f�, �̃k is not changed by the presence of
Ufc. The valence transition is discussed as a function of vari-
ous model parameters such as Coulomb repulsion Ufc, hy-
bridization V, and temperature T. For fixed total electron
number, we find that the valence transition becomes sharper
with increasing Ufc and decreasing T and V. Based on the
present results, in a forthcoming paper we want to extend our
work to discuss the physical properties of a superconducting
phase in two dimensions.

The main objective of the present approach was to discuss
the physical properties of the extended PAM in the valence
transition regime. In particular, we were interested in the
influence of the Coulomb repulsion Ufc between f and con-
duction electrons since charge fluctuations due to the Ufc
were claimed to lead to a superconducting phase in the in-
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FIG. 8. �Color online� Averaged f occupation number 
n̂f� as a
function of the unrenormalized f energy �̄ f �a� for some values of
temperature T with Ufc=2, V=0.1 and �b� for several values of the
hybridization V with Ufc=2, T=0.05.
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termediate valence regime. This problem will be discussed in
a forthcoming paper. In the future, the present approach will
also be extended to the Kondo phase in order to incorporate
heavy-fermion behavior. The basic idea is as follows. As
long as the bare �̄ f is located far below the Fermi level the
renormalized f level �̃ f is practically not changed and the f
occupation 
nf�=1. Heavy-fermion behavior should result
from this case, if additional spin-dependent interactions are
included in the renormalization equations. These interactions
resemble the Kondo exchange which is usually derived from
the PAM by use of the Schrieffer-Wolff transformation.

It also may be interesting to compare the PRM method
with the so-called X boson cumulant approach. This
approach40 was recently applied to the periodic Anderson
model, leaving out the Coulomb repulsion Ufc. Applying a
chain approximation for the one-particle Green’s function,

poles were found which can also be derived within the PRM.
However, some simplifications are necessary.18,19 One ne-
glects the 
 dependence of � f ,
 and approximates � f ,
−D�̃


by a 
-independent �̃ f instead of evaluating the full renor-
malization Eq. �39� for � f ,
. The remaining renormalization
equations �with Uk,k+q,
 set equal to zero� can be solved
analytically. In this way, one finds the same one-particle ex-
citations as in the X boson approach of Ref. 40.
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